4,405 research outputs found

    The Sphaleron Rate in SU(N) Gauge Theory

    Full text link
    The sphaleron rate is defined as the diffusion constant for topological number NCS = int g^2 F Fdual/32 pi^2. It establishes the rate of equilibration of axial light quark number in QCD and is of interest both in electroweak baryogenesis and possibly in heavy ion collisions. We calculate the weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most sensible extrapolation towards intermediate coupling which we can. We also study the behavior of the sphaleron rate at weak coupling at large Nc.Comment: 18 pages with 3 figure

    Long-range temporal correlations in scale-free neuromorphic networks

    Full text link
    © 2020 Massachusetts Institute of Technology. Biological neuronal networks are the computing engines of the mammalian brain. These networks exhibit structural characteristics such as hierarchical architectures, small-world attributes, and scale-free topologies, providing the basis for the emergence of rich temporal characteristics such as scale-free dynamics and long-range temporal correlations. Devices that have both the topological and the temporal features of a neuronal network would be a significant step toward constructing a neuromorphic system that can emulate the computational ability and energy efficiency of the human brain. Here we use numerical simulations to show that percolating networks of nanoparticles exhibit structural properties that are reminiscent of biological neuronal networks, and then show experimentally that stimulation of percolating networks by an external voltage stimulus produces temporal dynamics that are self-similar, follow power-law scaling, and exhibit long-range temporal correlations. These results are expected to have important implications for the development of neuromorphic devices, especially for those based on the concept of reservoir computing

    Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis

    Get PDF
    Differentiation and homeostasis of natural killer (NK) cells relies on common gamma-chain (γc)-dependent cytokines, in particular IL-15. Consequently, NK cells do not develop in mice with targeted γc deletion. Herein we identify an alternative pathway of NK-cell development driven by the proinflammatory cytokine IL-12, which can occur independently of γc-signalling. In response to viral infection or upon exogenous administration, IL-12 is sufficient to elicit the emergence of a population of CD122+CD49b+ cells by targeting NK-cell precursors (NKPs) in the bone marrow (BM). We confirm the NK-cell identity of these cells by transcriptome-wide analyses and their ability to eliminate tumour cells. Rather than using the conventional pathway of NK-cell development, IL-12-driven CD122+CD49b+ cells remain confined to a NK1.1lowNKp46low stage, but differentiate into NK1.1+NKp46+ cells in the presence of γc-cytokines. Our data reveal an IL-12-driven hard-wired pathway of emergency NK-cell lymphopoiesis bypassing steady-state γc-signalling

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    Buttressing staples with cholecyst-derived extracellular matrix (CEM) reinforces staple lines in an ex vivo peristaltic inflation model

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ Springer Science + Business Media, LLC 2008Background - Staple line leakage and bleeding are the most common problems associated with the use of surgical staplers for gastrointestinal resection and anastomotic procedures. These complications can be reduced by reinforcing the staple lines with buttressing materials. The current study reports the potential use of cholecyst-derived extracellular matrix (CEM) in non-crosslinked (NCEM) and crosslinked (XCEM) forms, and compares their mechanical performance with clinically available buttress materials [small intestinal submucosa (SIS) and bovine pericardium (BP)] in an ex vivo small intestine model. Methods - Three crosslinked CEM variants (XCEM0005, XCEM001, and XCEM0033) with different degree of crosslinking were produced. An ex vivo peristaltic inflation model was established. Porcine small intestine segments were stapled on one end, using buttressed or non-buttressed surgical staplers. The opened, non-stapled ends were connected to a peristaltic pump and pressure transducer and sealed. The staple lines were then exposed to increased intraluminal pressure in a peristaltic manner. Both the leak and burst pressures of the test specimens were recorded. Results - The leak pressures observed for non-crosslinked NCEM (137.8 ± 22.3 mmHg), crosslinked XCEM0005 (109.1 ± 14.1 mmHg), XCEM001 (150.1 ± 16.0 mmHg), XCEM0033 (98.8 ± 10.5 mmHg) reinforced staple lines were significantly higher when compared to non-buttressed control (28.3 ± 10.8 mmHg) and SIS (one and four layers) (62.6 ± 11.8 and 57.6 ± 12.3 mmHg, respectively) buttressed staple lines. NCEM and XCEM were comparable to that observed for BP buttressed staple lines (138.8 ± 3.6 mmHg). Only specimens with reinforced staple lines were able to achieve high intraluminal pressures (ruptured at the intestinal mesentery), indicating that buttress reinforcements were able to withstand pressure higher than that of natural tissue (physiological failure). Conclusions - These findings suggest that the use of CEM and XCEM as buttressing materials is associated with reinforced staple lines and increased leak pressures when compared to non-buttressed staple lines. CEM and XCEM were found to perform comparably with clinically available buttress materials in this ex vivo model.Enterprise Irelan

    Atomic Scale Dynamics Drive Brain-like Avalanches in Percolating Nanostructured Networks.

    Full text link
    Self-assembled networks of nanoparticles and nanowires have recently emerged as promising systems for brain-like computation. Here, we focus on percolating networks of nanoparticles which exhibit brain-like dynamics. We use a combination of experiments and simulations to show that the brain-like network dynamics emerge from atomic-scale switching dynamics inside tunnel gaps that are distributed throughout the network. The atomic-scale dynamics emulate leaky integrate and fire (LIF) mechanisms in biological neurons, leading to the generation of critical avalanches of signals. These avalanches are quantitatively the same as those observed in cortical tissue and are signatures of the correlations that are required for computation. We show that the avalanches are associated with dynamical restructuring of the networks which self-tune to balanced states consistent with self-organized criticality. Our simulations allow visualization of the network states and detailed mechanisms of signal propagation

    Ultraviolet asymptotics of scalar and pseudoscalar correlators in hot Yang-Mills theory

    Full text link
    Inspired by recent lattice measurements, we determine the short-distance (a > omega >> pi T) asymptotics of scalar (trace anomaly) and pseudoscalar (topological charge density) correlators at 2-loop order in hot Yang-Mills theory. The results are expressed in the form of an Operator Product Expansion. We confirm and refine the determination of a number of Wilson coefficients; however some discrepancies with recent literature are detected as well, and employing the correct values might help, on the qualitative level, to understand some of the features observed in the lattice measurements. On the other hand, the Wilson coefficients show slow convergence and it appears uncertain whether this approach can lead to quantitative comparisons with lattice data. Nevertheless, as we outline, our general results might serve as theoretical starting points for a number of perhaps phenomenologically more successful lines of investigation.Comment: 27 pages. v2: minor improvements, published versio

    Gauge invariant definition of the jet quenching parameter

    Full text link
    In the framework of Soft-Collinear Effective Theory, the jet quenching parameter, q^\hat{q}, has been evaluated by adding the effect of Glauber gluon interactions to the propagation of a highly-energetic collinear parton in a medium. The result, which holds in covariant gauges, has been expressed in terms of the expectation value of two Wilson lines stretching along the direction of the four-momentum of the parton. In this paper, we show how that expression can be generalized to an arbitrary gauge by the addition of transverse Wilson lines. The transverse Wilson lines are explicitly computed by resumming interactions of the parton with Glauber gluons that appear only in non-covariant gauges. As an application of our result, we discuss the contribution to q^\hat{q} coming from transverse momenta of order g2Tg^2T in a medium that is a weakly-coupled quark-gluon plasma.Comment: 31 pages, 7 figures; journal versio
    • …
    corecore